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Abstract. Explicit formulae for thermal diffuse scattering from octagonal quasicrystals have
been derived in terms of elastic constants. Contours of constant diffuse scattering intensity are
calculated. The anisotropic peak shapes vary greatly even for Bragg spots aligned with a given
direction in reciprocal space. Diffuse scattering patterns in the plane perpendicular to a given zone
axis are associated with corresponding specific elastic constants. Analysis of peak shapes can be
used to acquire numerical values of elastic constants if diffuse scattering patterns can be measured
precisely.

1. Introduction

The discovery of Al–Mn alloy with icosahedral symmetry (Shechtmanet al 1984), followed
promptly by other forbidden symmetries, opened rapidly a new field in condensed matter
physics and crystallography. The striking characteristic of quasicrystals is the existence
of sharp Bragg peaks. However, distortion and peak broadening observed in diffraction
patterns revealed some systematic deviations from the ideal quasicrystal model (Bancelet al
1985, Bancel and Heiney 1986). How strains in phonon and phason variables or quenched
dislocations can lead to these experimental observations has been discussed (Lubenskyet al
1986, Hornet al 1986). Socolar and Wright (1987) have examined the shapes of Bragg
spots observed in icosahedral phases and reproduced the peak shapes by the superposition
of uniform phason strains. Jaric and Nelson (1988) have developed an alternative theory of
diffuse scattering from incommensurate crystals and quasicrystals due to spatially fluctuating
thermal and quenched strains and applied their derived general formulae to a specific case
of icosahedral quasicrystals according to elastic properties of icosahedral quasicrystals which
have been the focus of many theoretical works (Levineet al 1985, Lubenskyet al 1985, Bak
1985a, b). With the help of this theory, the onset of hydrodynamic instability of icosahedral
phases has been discussed (Widom 1991, Ishii 1992); the diffuse scattering located close to
Bragg reflections has been studied as a function of the temperature on a single grain of the
Al–Pd–Mn icosahedral phase using elastic neutron scattering and the ratio of two phason
elastic constants was obtained (de Boisseauet al 1995, Boudardet al 1996).

Kuo and his colleagues observed experimentally octagonal quasicrystals in Ni10SiV15

and Cr5Ni3Si2 (Wanget al 1987), in Mn4Si (Caoet al 1988), in Al3Mn82Si15 (Wanget al
1988) and in Fe–Mn–Si (Wang and Kuo 1988) which are all metastable. Elastic properties
of planar quasicrystals with eightfold symmetry have been discussed in the literature (Socolar
1989, Dinget al 1993, Huet al 1993). Recently, some investigators have restricted attention
to two-dimensional (2D) quasicrystals including octagonal quasicrystals (Yanget al 1995,
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Hu et al 1996, 1997). Based on the 5D crystallographic symmetry operations listed by
Janssen (1992), they have derived all possible point groups of 2D quasicrystals of rank 5
and calculated the numbers of independent fourth-rank elastic constants of 2D quasicrystals
with group representation theory. Here and hereafter, a 2D quasicrystal refers not to a real
plane but to a 3D solid with 2D quasiperiodic and 1D periodic structure.

The purpose of this paper was to investigate diffuse scattering from octagonal quasicrystals
theoretically. Point groups, Laue classes and elastic properties of octagonal quasicrystals are
summarized in section 2. Diffuse scattering from octagonal quasicrystals is formulated in
section 3. Contours of constant diffuse scattering intensity are illustrated and discussion of the
results are given in section 4. The coordinate systems which we use for octagonal quasicrystals
are given in the appendix.

2. Point groups, Laue classes and elastic properties of octagonal quasicrystals

In this section we will illustrate the determination of explicit forms of invariant terms in the
elastic energy and elastic constant tensor for the octagonal system. We would like to limit the
brief description of this method to a minimum necessary for the calculation. A more detailed
discussion can be found in the literature (Huet al 1993, 1996, 1997, Yanget al 1995).

If an analytic expression of the elastic free energy is possible, it will be quadratic in the
special gradients of phonon displacementsu‖ and phason displacementsu⊥ at long wavelength
when it is expanded in terms of the Taylor series to the second order. Since the elastic energy
is a scalar quantity, each individual term in it mush be invariant under all of the point group
operations of the structure. In order to construct these quadratic invariants, we can invoke the
group representation theory. As an example, we consider the point group 8mm(D8) generated
by a eightfold rotationα and a mirrorβ, which can be represented by

0(α)


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−1 0 0 0 0

0 0 0 0 1

 0(β) =


1 0 0 0 0

0 0 0 −1 0

0 0 −1 0 0

0 −1 0 0 0

0 0 0 0 1

 . (2.1)

Repeated application of these two matrices generates a representation of the point group 8mm,
which we denote0. This representation is reducible. The reduction is

0 = 05 + 01 + 07. (2.2)

It follows that u‖ transforms under05 + 01 andu⊥ transforms under07. Therefore, the
displacement gradients∂ju

‖
i (i, j = 1, 2, 3) and∂ju⊥i (i = 1, 2, j = 1, 2, 3) transform

according to their respective direct product representation. It should be noted thatu‖ is a
three-component vector whileu⊥ a two-component vector, and both of them are the functions
of the position vector in the physical space only. For the phonon field, the nine components
of ∂ju

‖
i transform under

(05 + 01)× (05 + 01) = 201 + 205 + 02 + 06. (2.3)

Among them the antisymmetric components∂1u
‖
2− ∂2u

‖
1, ∂2u

‖
3− ∂3u

‖
2, ∂3u

‖
1− ∂1u

‖
3 transform

under05 + 02 corresponding to rigid rotations, which do not change the elastic energy. The
symmetric components∂1u

‖
1 + ∂2u

‖
2 and∂3u

‖
3 transform under01 (the identity representation),

from which it follows that there are three quadratic invariants:

(E11 +E22)
2, E2

33, (E11 +E22)E33 (2.4)
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whereEij = 1
2(∂ju

‖
1 + ∂iu

‖
j ) is used. The pairs (∂1u

‖
1 − ∂2u

‖
2, ∂1u

‖
2 + ∂2u

‖
1) and (∂3u

‖
1 + ∂1u

‖
3,

∂3u
‖
2 + ∂2u

‖
3) span the 2D irreducible representations06 and05 respectively. Since01 occurs

once and only once in the products06× 06 and05× 05, it is obvious that

(E11− E22)
2 + (2E12)

2, E2
13 +E2

23 (2.5)

are two invariants. From equations (2.4) and (2.5), it follows that associated with the phonon
field there are five quadratic invariants and five independent elastic constants

C11, C12, C13, C33, C44, C66 = 1
2(C11− C12). (2.6)

For the phason field six components of∂ju⊥i transform under

(05 + 01)× 07 = 03 + 04 + 06 + 07. (2.7)

The components∂1u
⊥
1 − ∂2u

⊥
2 and∂1u

⊥
2 + ∂2u

⊥
1 transform under03 and04 respectively, from

which it follows that there are two quadratic invariants:

(∂1u
⊥
1 − ∂2u

⊥
2 )

2, (∂1u
⊥
2 + ∂2u

⊥
1 )

2. (2.8)

The pairs (∂1u
⊥
1 +∂2u

⊥
2 , ∂1u

⊥
2 −∂2u

⊥
1 ) and (∂3u

⊥
1 , ∂3u

⊥
2 ) span the 2D irreducible representations

06 and07 respectively. Thus, we can obtain two quadratic invariants:

(∂1u
⊥
1 + ∂2u

⊥
2 )

2 + (∂1u
⊥
2 − ∂2u

⊥
1 )

2, (∂3u
⊥
1 )

2 + (∂3u
⊥
2 )

2. (2.9)

From equations (2.8) and (2.9), it follows that associated with the phason field there are four
quadratic invariants and four independent elastic constants. Nonvanishing elastic constants
are

K1111= K2222= K1,K1122= K2211= K2,K1221= K2112= K3,

K1313= K2323= K4,K1212= K2121= K1 +K2 +K3. (2.10)

Moreover, notice that the irreducible representation06 occurs in both of the reduction
equations (2.3) and (2.7). This means that there exists an invariant

(E11− E22)(∂
⊥u⊥1 + ∂2u

⊥
2 ) + 2E12(∂1u

⊥
2 − ∂2u

⊥
1 ) (2.11)

couplingu‖ andu⊥. The nonvanishing elastic constant is

R1111= R1122= −R2211= −R2222= R1221= R2121= −R1212= −R2112= R1. (2.12)

Therefore, it can be seen that there are ten quadratic invariants and hence ten independent
elastic constants for 8mm. Among them five elastic constants are associated with the phonon
field, four with the phason field and one with the phonon–phason coupling.

In the same way we can find all invariants and independent elastic constants for 8 (C8)
symmetry. There are twelve quadratic invariants and hence twelve independent elastic
constants. Among them ten elastic constants are the same as those for 8mm; the other two are
the nonvanishing phason elastic constant

K1112= K1211= K1121= K2111= −K2212= −K1222= −K2221= −K2122= K5 (2.13)

and the phonon–phason coupling elastic constant

R1112= −R1121= −R2212= R2221= R1211= R2111= R1222= R2122= R2. (2.14)

The octagonal system has seven point groups divided into two Laue classes which we term
Laue classes 15 and 16 respectively. Laue class 15 includes 8,8̄ and 8/m while Laue class 16
includes 8mm, 822,8̄m2 and 8/mmm. Elastic properties possess an inherent centrosymmetry.
Therefore, all point groups belonging to the same Laue class possess the same elastic properties.
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3. Formulae for diffuse scattering from octagonal quasicrystals

3.1. General formulae for diffuse scattering from quasicrystals

Here we derive general formulae for diffuse scattering from quasicrystals by a method similar
to that used for ordinary crystals (Wooster 1962). In higher-dimensional description of
quasicrystals the density of a quasicrystal can be represented by

ρ‖(x‖) = ρ(x‖,x⊥ = 0) (3.1)

whereρ is the corresponding density ind-dimensional embedding space. Furthermore,

ρ(x) = ρ0(x)−1ρ(x) = ρ0(x)−∇ · [ρ0(x)u(x
‖)] (3.2)

whereρ(x) corresponds to the density in the hyperspace of a disordered quasicrystal and
ρ0(x) that of a perfect quasicrystal,u(x‖) = ∫ u(p‖) ei(p‖·x‖−ω(p‖)t) d3p‖ is thed-dimensional
displacement field mentioned in the preceding section and1ρ(x) is the density decrease at
the positionx caused by the displacement fieldu(x‖). This equation can be regarded as an
extension of the ordinary equation of continuity to the higher-dimensional case. Therefore,
equation (3.1) can be replaced by

ρ‖(x‖) = ρ‖0(x‖)−1ρ‖(x‖). (3.3)

Furthermore,ρ0(x) can be written as

ρ0(x) =
∑
R

δ(x−R) ∗ ρc(x) (3.4)

whereR is a hyperlattice point,∗ means convolution andρc(x) denotes the density in a unit
hypercell. The Fourier transform ofρ0(x) is

80(q) =
∫
ρ0(x) e−iq·x ddx =

∑
R

e−iq·RF(q) = (2π)d

vc

∑
Q

δ(q −Q)F (Q) (3.5)

wherevc is the volume of the unit hypercell,Q is the reciprocal hyperlattice vector and

F(q) =
∫
ρc(x) e−iq·x ddx (3.6)

is the structure factor of the unit hypercell. From equation (3.5)ρ0(x) can also be written in
the form of the inverse Fourier transform of80(q),

ρ0(x) = 1

(2π)d

∫
80(q) eiq·x ddq = 1

vc

∑
Q

F(Q) eiQ·x. (3.7)

Substituting this expression into equation (3.2), and after writing1ρ(x) in terms of the Fourier
transformu(p‖), we have

1ρ(x) = i

vc

∑
Q

F(Q)

∫
(Q + p‖) · u(p‖) ei(Q+p‖)·x d3p‖. (3.8)

The Fourier transform of1ρ(x) is

18(q) =
∫
1ρ(x) e−iq·x ddx = i

(2π)d

vc

∑
Q

F(Q)

∫
(Q + p‖) · u(p‖)δ(q −Q− p‖) d3p‖.

(3.9)

Since the Fourier transform of a cut is equal to a projection of a Fourier transform, the Fourier
transform ofρ‖0(x

‖) is

8
‖
0(q
‖) =

∫
80(q) dd−3q⊥ = (2π)d

vc

∑
Q

δ‖(q‖ −Q‖)F (Q). (3.10)
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Similarly, the Fourier transform of1ρ‖(x‖) is

18‖(q‖) =
∫
18(q) dd−3q⊥ = i

(2π)d

vc

∑
Q

F(Q)(q‖ +Q⊥) · u(q‖ −Q‖). (3.11)

Therefore, the observed intensity is

I (q‖) = |8‖(q‖)|2 = |8‖0(q‖0) +18‖(q‖)|2

= |8‖0(q‖0)|2 + 2 Re(8‖0(q
‖
0)18

‖(q‖)) + |18‖(q‖)|2 (3.12)

where the first term is independent ofu, the second term is linear inu and the third term
quadratic inu. Sinceu is a thermodynamic quantity, we must carry out the statistical average.
After the average over the probability distribution ofu the surviving terms are

IBragg(q
‖) = |8‖0(q‖)|2 =

V

(2π)3
(2π)2d

v2
c

∑
Q

δ‖(q‖ −Q‖)|F(Q)|2 (3.13)

and

Ids(q
‖) = |18‖(q‖)|2 = (2π)2d

v2
c

∑
Q

|F(Q)|2|(q‖ +Q⊥) · u(q‖ −Q‖)|2 (3.14)

whereV is the volume of the studied quasicrystal and the Debye–Waller factor is contained in
|F(Q)|2. The former gives the Bragg scattering intensity and the latter the diffuse scattering
intensity. It follows from equations (3.13) and (3.14) that the integrated intensity of Bragg
scattering around a particular Bragg spotQ‖ is

IBragg(Q
‖) = V

(2π)3
(2π)2d

v2
c

|F(Q)|2 (3.15)

and sufficiently near a particular Bragg spotQ‖, the diffuse scattering intensity is

Ids(Q
‖ + p‖) ≈ (2π)2d

v2
c

|F(Q)|2|Q · u(p‖)|2 (3.16)

since the contributions from other Bragg spots may be neglected. In order to find the explicit
expression foru(p‖), we can employ the generalized elasticity theory of quasicrystals (Ding
et al 1993) according to which the equations of motion are

Cijkl
∂2u
‖
k(x
‖)

∂xj ∂xl
+Rijkl

∂2u⊥k (x
‖)

∂xj ∂xl
= µ∂

2u
‖
i (x
‖)

∂2t

Rklij
∂2u
‖
k(x
‖)

∂xj ∂xl
+Kijkl

∂2u⊥k (x
‖)

∂xj ∂xl
= µ∂

2u⊥i (x
‖)

∂2t
(3.17)

or, in terms of the Fourier transformu(p‖),

Cijklp
‖
jp
‖
l u
‖
k(p
‖) +Rijklp

‖
jp
‖
l u
⊥
k (p

‖) = µω2(p‖)u‖i (p
‖)

Rklijp
‖
jp
‖
l u
‖
k(p
‖) +Kijklp

‖
jp
‖
l u
⊥
k (p

‖) = µω2(p‖)u⊥i (p
‖) (3.18)

which can be written in the matrix form[
A‖,‖ (p‖) A‖,⊥(p‖)

A⊥,‖(p‖) A⊥,⊥(p‖)

][
u‖(p‖)
u⊥(p‖)

]
= µω2(p‖)

[
u‖(p‖)
u⊥(p‖)

]



1216 Jianlin Lei et al

with

[A‖,‖(p‖)]ik = Cijklp‖jp‖l
[A⊥,⊥(p‖)]ik = Kijklp‖jp‖l (3.19)

[A‖,⊥(p‖)]ik = [A⊥,‖(p‖)]ki = Rijklp‖jp‖l .
Equation (3.19) can be regarded as an extension of Christoffel’s equation from the case of
ordinary crystals to that of quasicrystals.

Letting

A(p‖) =
[

A‖,‖(p‖) A‖,⊥(p‖)
A⊥,‖(p‖) A⊥,⊥(p‖)

]
λ(p‖) = µω2(p‖)

(3.20)

we have

A(p‖) · u(p‖) = λ(p‖)u(p‖). (3.21)

This is a standard eigenvalue equation for the hydrodynamic matrixA(p‖) (Jennings 1977).
For a given wavevector, there ared eigenvaluesλ(α)(p‖) andd unit eigenvectorse(α)(p‖).
Then

λ(α)(p
‖) = µω2

(α)(p
‖) u(α)(p

‖) = ξ(α)(p‖)e(α)(p‖) (α = 1, 2, . . . , d) (3.22)

whereξ(α)(p‖) denotes the amplitude ofu(α)(p‖). The scattering intensities due to thed elastic
waves simply add because thed scattered radiations are incoherent. Therefore, equation (3.16)
should be replaced by

Ids(Q
‖ + p‖) = (2π)2d

v2
c

|F(Q)|2
∑
α

|ξ(α)(p‖)|2|Q · e(α)(p‖)|2. (3.23)

To calculate the thermodynamic average in equation (3.23), we can employ the energy
equipartition theorem which leads to

1

2
µV

∣∣∣∣ (2π)3V
ξ(α)(p

‖)
∣∣∣∣2ω2

(α)(p
‖) = 1

2
kBT (3.24)

whereT is temperature andkB is the Boltzmann constant. Using the value of|ξ(α)(p‖)|2
calculated from equation (3.24), and using equations (3.15) and (3.23), we find that

Ids(Q
‖ + p‖) = kBT

(2π)3
∑
α

(Q · e(α)(p‖))(e(α)(p‖) ·Q)
λ(α)(p‖)

IBragg(Q
‖). (3.25)

Notice that (Jennings 1977)

e(α)p(p
‖)e(α)q(p‖)

λ(α)(p‖)
= [A−1(p‖)]pq (3.26)

where subscriptsp andq denote the components. We can immediately write out

Ids(Q
‖ + p‖) = kBT

(2π)3
Q · A−1(p‖) ·Q · IBragg(Q

‖). (3.27)

The result coincides with that given by Jaric and Nelson (1988) except for a constant coefficient.
If the phasons drop out of thermal equilibrium at an elevated temperatureTq , then at a lower

temperatureT , phonons will equilibrate in the presence of a quenched phason displacement
field. This situation has been examined by Jaric and Nelson (1988) and Leiet al (1999) and it
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has been concluded (Leiet al1999) thatA‖,‖(p‖), A‖,⊥(p‖) andA⊥,
‖
(p‖) blocks are still given

by equation (3.19) but theA⊥,⊥(p‖) block should be modified by

A⊥,⊥(p‖) = T

Tq
{A⊥,⊥q (p‖)− A⊥,‖q (p‖) · [A‖,‖q (p‖)]−1 · A‖,⊥q (p‖)}

+A⊥,‖(p‖) · [A‖,‖(p‖)]−1 · A‖,⊥(p‖) (3.28)

where the subscriptq means that the values of the elastic constants atTq should be used. It
should be emphasized that matrixA(p‖) is associated not only with phonon and phonon–phonon
coupling elastic constantsCijkl(T ), Rijkl(T ) at T , but also with all of the elastic constants
Cijkl(Tq), Kijkl(Tq) andRijkl(Tq) at Tq . Obviously, equation (3.28) will be reduced to that
defined in equation (3.19) ifT = Tq , which is physically reasonable.

3.2. Explicit expressions for a specific case of octagonal quasicrystals

It has been pointed out in section 2 that all point groups belonging to the same Laue class
possess the same elastic properties due to the inherent centrosymmetry of elastic properties.
Therefore, matrixA(p‖) is identical for all point groups belonging to the same Laue class.
From elastic properties of octagonal quasicrystals, explicit expressions ofA‖,‖(p‖), A⊥,⊥(p‖)
andA‖,⊥(p‖) blocks for each Laue class of octagonal system can be easily obtained.

3.2.1. Laue class 15. In this case,A‖,‖(p‖), A⊥,⊥(p‖) andA‖,⊥(p‖) blocks are given by

A‖,‖(p‖) =


C11p

‖2
1 +C66p

‖2
2 +C44p

‖2
3 (C11− C66)p

‖
1p
‖
2

(C11− C66)p
‖
1p
‖
2 C66p

‖2
1 +C11p

‖2
2 +C44p

‖2
3

(C44 +C13)p
‖
1p
‖
3 (C44 +C13)p

‖
2p
‖
3

(C44 +C13)p
‖
1p
‖
3

(C44 +C13)p
‖
2p
‖
3

C44(p
‖2
1 + p‖22 ) +C33p

‖2
3

 (3.29)

A⊥,⊥(p‖) =
[
K1p

‖2
1 + (K1 +K2 +K3)p

‖2
2 +K4p

‖2
3 + 2K5p

‖
1p
‖
2

K5(p
‖2
1 − p‖22 ) + (K2 +K3)p

‖
1p
‖
2

K5(p
‖2
1 − p‖22 ) + (K2 +K3)p

‖
1p
‖
2

(K1 +K2 +K3)p
‖2
1 +K1p

‖2
2 +K4p

‖2
3 − 2K5p

‖
1p
‖
2

]
(3.30)

and

A‖,⊥(p‖) =

 R1(p
‖2
1 − p‖22 ) + 2R2p

‖
1p
‖
2 −R2(p

‖2
1 − p‖22 ) + 2R1p

‖
1p
‖
2

R2(p
‖2
1 − p‖22 )− 2R1p

‖
1p
‖
2 R1(p

‖2
1 − p‖22 ) + 2R2p

‖
1p
‖
2

0 0

 . (3.31)

3.2.2. Laue class 16.TheA‖,‖(p‖) block takes the same form as equation (3.29). However,
in this case elastic constantsK5 andR2 vanish compared with Laue class 15. Consequently
A⊥,⊥(p‖) andA‖,⊥(p‖) blocks are

A⊥,⊥(p‖) =
[
K1p

‖2
1 + (K1 +K2 +K3)p

‖2
2 +K4p

‖2
3

(K2 +K3)p
‖
1p
‖
2

(K2 +K3)p
‖
1p
‖
2

(K1 +K2 +K3)p
‖2
1 +K1p

‖2
2 +K4p

‖2
3

]
(3.32)
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and

A‖,⊥(p‖) =

R1(p
‖2
1 − p‖22 ) 2R1p

‖
1p
‖
2

−2R1p
‖
1p
‖
2 R1(p

‖2
1 − p‖22 )

0 0

 . (3.33)

4. Contours of constant diffuse scattering intensity

Using the formulae derived above, we simulated contours of constant diffuse scattering
intensity for octagonal quasicrystals. In calculation, we use the ratios of elastic constants
because peak shapes are determined by the relative values of elastic constants but not their
absolute values. Lattice constants are taken asa = 7.1 Å, c = 6.3 Å.

Point groups 8/m and 8/mmm represent symmetries of Laue classes 15 and 16
respectively. Figure 1 represents a plane perpendicular to the periodic direction with quenched
phason displacements for the case of Laue class 15. It is assumed that phason quench
temperatureTq = 3 T . The diffuse scattering patterns in this plane show eightfold rotation
symmetry which is consistent with point group 8/m.

Figure 1. Contours of constant diffuse scattering intensity in a plane perpendicular to the periodic
axis with quenched phasons whenT = 1

3Tq for the case of Laue class 15. Elastic constants are taken
asC11(T ) = 1.0,C13(T ) = −0.1,C33(T ) = 0.4,C44(T ) = 0.6,C66(T ) = 0.8,R1(T ) = 0.05,
R2(T ) = 0.03,C11(Tq) = 0.9, C13(Tq) = 0.2, C33(Tq) = 0.3, C44(Tq) = 0.5, C66(Tq) = 0.6,
R1(Tq) = 0.04,R2(Tq) = 0.02,K1(Tq) = 0.9,K2(Tq) = −0.2,K3(Tq) = −0.3,K4(Tq) = 0.4
andK5(Tq) = 0.1.

Figures 2 and 3 give the results for the case of Laue class 16 which we would like to discuss
in detail. Figures 2(a) and (b) illustrate diffuse scattering patterns in the plane perpendicular
to the periodic direction for quenched phasons corresponding to two sets of different ratios
of elastic constants. It it still assumed thatTq = 3T . It is obvious that the contour shapes
around the same Bragg spots are quite different in figures 2(a) and (b). Figure 2(c) represents
the same plane provided that both phonons and phasons are thermalized atT . Therefore, only
elastic constants atT are involved in calculation. We take the same values of phonon and
phonon–phason coupling elastic constants as those in figure 2(a). Compared with figure 2(a),
the diffuse scattering decreased accompanied by slight variation of contour shapes around the
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Figure 2. Isointensity contours in planes for the case of Laue class 16. (a), (d) and (e) correspond,
respectively, to planes perpendicular to eightfold, A2P and A2D axes with quenched phasons
whenT = 1

3Tq . Elastic constants are taken asC11(T ) = 1.0, C13(T ) = −0.1, C33(T ) = 0.4,
C44(T ) = 0.6, C66(T ) = 0.8, R1(T ) = 0.05,C11(Tq) = 0.9, C13(Tq) = 0.2, C33(Tq) = 0.3,
C44(Tq) = 0.5,C66(Tq) = 0.6,R1(Tq) = 0.04,K1(Tq) = 0.9,K2(Tq) = −0.2,K3(Tq) = −0.3
andK4(Tq) = 0.4. (b) Similar to (a) except that elastic constants are taken asC11(T ) = 1.0,
C13(T ) = 0.2, C33(T ) = 0.6, C44(T ) = 0.3, C66(T ) = 0.4, R1(T ) = −0.05,C11(Tq) = 0.9,
C13(Tq) = −0.1, C33(Tq) = 0.4, C44(Tq) = 0.2, C66(Tq) = 0.3, R1(Tq) = −0.08,
K1(Tq) = 0.5, K2(Tq) = 0.4, K3(Tq) = 0.2 andK4(Tq) = 0.6. (c) The same as (a) except
that phasons are assumed to be thermalized. Phason elastic constants are taken asK1(T ) = 0.7,
K2(T ) = −0.1,K3(T ) = −0.2 andK4(T ) = 0.5.
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Figure 3. Comparisons of stereoscopic contours around Bragg spots (2 2 1−1 1) and (2−1−1 2 0)
with quenched phasons whenT = 1

3Tq for the case of Laue class 16. Phonon–phason coupling
elastic constants are taken asR1(T ) = −0.1 andR1(Tq) = −0.05. The other parameters are
taken as follows: (a)C11(T ) = 1.0,C13(T ) = 0.2,C33(T ) = 0.5,C44(T ) = 0.6,C56(T ) = 0.7,
C11(Tq) = 0.9, C13(Tq) = 0.1, C33(Tq) = 0.4, C44(Tq) = 0.5, C66(Tq) = 0.6,K1(Tq) = 0.9,
K2(Tq) = −0.2, K3(Tq) = −0.4 andK4(Tq) = 0.7; (b) C11(T ) = 1.0, C13(T ) = −0.3,
C33(T ) = 0.3, C44(T ) = 0.5, C66(T ) = 0.2, C11(Tq) = 0.9, C13(Tq) = −0.2, C33(Tq) = 0.2,
C44(Tq) = 0.6, C66(Tq) = 0.3 and the same phason elastic constants as those in (a); (c) the
same phonon elastic constants as those in (a) andK1(Tq) = 0.6,K2(Tq) = 0.8,K3(Tq) = 0.7,
K4(Tq) = 0.6.

same Bragg spots due to the reduced contribution of phason disorder. If the diffuse scattering
patterns like those in figures 2(a)–(c) could be detected and measured precisely, one could use
these patterns to extract information about elastic constants. Such experiments have been done
on a single grain of Al–Pd–Mn icosahedral phase using elastic neutron scattering (de Boissieu
et al 1995, Boudardet al 1996). It follows from equations (3.29) and (3.32) that terms
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containing elastic constantsC13, C33 andK4 vanish in matrixA(p‖) if the diffuse scattering
patterns are measured in the plane perpendicular to the periodic direction as in figures 2(a)–(c)
so that such patterns are insufficient to acquire all of the elastic constants. Figures 2(d) and (e)
show patterns perpendicular, respectively, to twofold axes A2P, which is along the direction
of arbitrary basis vector in quasiperiodic plane or its equivalent direction, and A2D, which is
along a bisector between any of these basis vectors and its neighbouring equivalent direction
with the same conditions as for figure 2(a), and they may be used to give information about
the other elastic constants that figures 2(a)–(c) cannot present.

The symmetries of diffuse scattering patterns shown in figure 2 are consistent with point
group 8/mmm. There are two kinds of mirror in figures 2(a)–(c) besides an eightfold rotation
axis along the periodic direction. One is perpendicular to A2P and the other perpendicular to
A2D.

As shown in the figures above, in comparison with ordinary crystals, anisotropic contour
shapes of quasicrystals are much more complicated and the contour shapes vary from spot to
spot, even for collinear Bragg spots.

Figure 3 presents comparison of stereoscopic contours of constant diffuse scattering
intensity around Bragg spots (2 2 1−1 1) and (2−1−1 2 0) for quenched phasons when
T = 1

3Tq . In the calculations, we consider three sets of elastic constants. Only phonon
elastic constants in figure 3(b) and phason elastic constants in figure 3(c) are changed with
respect to those in figure 3(a). It is evident that the shape of isointensity contour around
reflection (2−1−1 2 0) which has a largeQ⊥ component varies greatly in figure 3(c) but
slightly in figure 3(b) in comparison with that in figure 3(a) while exactly the reverse results
can be found for reflection (2 2 1−1 1) which has a largeQ‖ component. The fact that peak
shapes of Bragg spots with largeQ⊥ component are dominated by phason elastic constants
can be accounted for by special phason degrees of freedom in quasicrystals which also give
rise to the variation of peak shapes among collinear Bragg spots.

In summary general formulae for thermal diffuse scattering from quasicrystals are applied
to the case of octagonal quasicrystals from corresponding elasticity theory. Contours of
constant diffuse scattering intensity were calculated to examine the effect of phonon and
phason disorders on diffuse scattering from octagonal quasicrystals. The symmetries of
diffuse scattering patterns are consistent with corresponding point groups. Unlike ordinary
crystals, shapes of isointensity contours are much more complicated and vary even among
the collinear Bragg spots due to the additional phason degrees of freedom. Information
about elastic constants can be extracted from quantitative analysis of diffuse scattering
patterns.
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Appendix. Coordinate systems for octagonal quasicrystals

Structural descriptions of octagonal quasicrystals are conveniently done in a 5D embedding
spaceE = (E‖, E⊥) which consists of two orthogonal subspaces, the 3D physical or
parallel spaceE‖ with orthogonal unit basis vectorsE‖1, E‖2, E‖3 and 2D complementary or
perpendicular spaceE⊥ with orthogonal unit basis vectorsE⊥1 ,E⊥2 . The diffraction pattern of
octagonal quasicrystals may be indexed using the combination of five reciprocal basis vectors
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e∗i , i = 1, 2, . . . ,5, which can be written as
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wherea∗ andc∗ are the reciprocal lattice constants. The direct basis vectorsei , i = 1, 2, . . . ,5,
in 5D embedding space are given by
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wherea, c are the lattice constants anda = 1/a∗, c = 1/c∗.
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